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Introduction

G protein-coupled receptors (GPCRs) form a large protein
family that plays an important role in many physiological and
pathophysiological processes. Historically, the discovery of
drugs acting at GPCRs has been extremely successful with
50 % of all recently launched drugs targeting GPCRs.[1] In par-
ticular, the subfamily of biogenic amine binding GPCRs has
provided excellent drug targets (given in brackets) for the
treatment of numerous diseases (Table 1), such as schizophre-
nia (mixed D2/D1/5-HT2 antagonists), psychosis (mixed D2/5-
HT2A antagonists), depression (5-HT1 agonists), migraine (5-HT1

agonists), allergies (H1 antagonists), asthma (b2 agonists, M1
antagonists), ulcers (H2 antagoinst), and hypertension (a1 an-
tagonist, b1 antagonist).

However, the central role that many of the biogenic amine
binding GPCRs play in cell signaling also poses a risk in new
drug candidates that reveal side affinities towards these recep-
tor sites. These candidates have the potential to interfere with
the physiological signaling processes and to cause undesired
effects in preclinical or clinical studies. For example, the a1A

adrenergic receptor modulates the relaxation of the vascular
muscle tone and is thus important for blood pressure regula-
tion. It has been suggested as an antitarget that mediates car-
diovascular side effects of many drug candidates, thereby caus-
ing orthostatic hypotension, dizziness, and fainting spells.[2, 3]

Furthermore, in order to obtain a clean clinical profile for novel
development candidates, strong molecular interactions with
dopamine and serotonin receptors (like the 5-HT2A and D2 re-
ceptors), which represent the molecular targets for many anti-
psychotics (for example, olanzapine or risperidone), need to be
avoided.

In order to monitor affinity profiles of new drug candidates
during compound optimization and to predict negative side
effects during chemical optimization, Aventis has established
biogenic amine receptor binding assays. Several lead com-
pounds, not only targeting against biogenic amine receptors,
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G protein-coupled receptors (GPCRs) form a large protein family
that plays an important role in many physiological and patho-
physiological processes. However, the central role that the bio-
genic amine binding GPCRs and their ligands play in cell signal-
ing poses a risk in new drug candidates that reveal side affinities
towards these receptor sites. These candidates have the potential
to interfere with the physiological signaling processes and to
cause undesired effects in preclinical or clinical studies. Here, we
present 3D cross-chemotype pharmacophore models for three
biogenic amine antitargets : the a1A adrenergic, the 5-HT2A seroto-

nin, and the D2 dopamine receptors. These pharmacophores de-
scribe the key chemical features present within these biogenic
amine antagonists and rationalize the biogenic amine side affini-
ties found for numerous new drug candidates. First applications
of the a1A adrenergic receptor model reveal that these in silico
tools can be used to guide the chemical optimization towards
development candidates with fewer a1A-mediated side effects (for
example, orthostatic hypotension) and, thus, with an improved
clinical safety profile.

Table 1. Biogenic amine binding GPCR targets, treated diseases, and drugs
on the market.

Target receptor (ago-
nists/antagonists)

Disease Generic name (Trademark)

histamine H1 allergies loratadine (Claritin),
(antagonists) fexofenadine (Allegra/Telfast),

Cetirizine (Zyrtec/Reactine)
histamine H2 ulcers raniditine (Zantac),
(antagonists) Famotidine (Pepcidine/Gaster)
adrenergic b2 (agonists) asthma salmeterol (Serevent)
muscarinic M1 asthma ipratropium (Atrovent)
(antagonists)
adrenergic a1 hypertension Doxazosin (Cardura)
(antagonists)
adrenergic b1 hypertension metoprolol (Seloken)
(antagonists)
serotonin 5-HT1 depression buspirone (Buspar)
(agonists) migraine sumatriptan (Imigran/Imitex)
dopaminergic D2 and schizophrenia olanzapine (Zyprexa)
serotonin 5-HT2
(antagonists)
dopaminergic D2 and psychosis risperidone (Risperdal)
serotonin 5-HT2A

(antagonists)
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but also targeting against chemokine or peptide binding
GPCRs, reveal affinities towards several members of the bio-
genic amine antitarget panel when they enter the chemical
optimization phase. Reliable in silico tools to identify com-
pounds with strong antitarget affinity and computational
models to guide the chemical optimization towards com-
pounds with a more favorable side-affinity profile are of great
value for the design and development of new drug candi-
dates.

In working towards this goal, we have generated pharmaco-
phore models for GPCR antitargets. The challenge in the gen-
eration of these “cross-chemotype” pharmacophore models is
the requirement that these models need to describe the recep-
tor interaction points not only for a single chemical series but
for several different compound classes. In addition, these phar-
macophores need to capture sufficient pharmacophoric points
to describe the important molecular interactions for the re-
spective receptor. Here we report the generation and valida-
tion of 3D pharmacophore models rationalizing the affinity of
several different chemical series for the a1A, the 5-HT2A, and the
D2 receptors. First applications of the a1A model within Aventis
GPCR projects reveal that these models are capable of rational-
izing the strong antitarget affinity of most lead series that
reveal undesired side affinities and, thus, can guide the chemi-
cal optimization towards development candidates with a
superior safety index.

Results and Discussion

Generation of antitarget pharmacophores

Selection of training sets : The training sets used for pharmaco-
phore generation have been extracted from the Aureus data-
base, a structure activity database for GPCR ligands compiled
and maintained by Aureus Pharma.[4] The database covers all
biological data published on GPCRs and provides chemical
structure information, references to the original publication or
patent, and detailed information on the experimental condi-
tions (for example, the assay type, cell line, or radioligand
used). We extracted only compounds that had been tested
with identical experimental protocols for inhibition constant
(Ki) determination in order to ensure the high quality and con-
sistency of the training-set data. As functional data obtained
from different laboratories and assay methods cannot be ex-
pected to provide comparable values, we used only biological
data from radioligand displacement assays. In addition, only
the most active compounds were considered within the train-
ing sets.

Adrenergic a1A receptor antagonists with a Ki value of less
than 100 nm when tested against the recombinant human
wild-type receptor (as determined in a radioligand displace-
ment assay by using the radioligand prazosin) were extracted
from the Aureus database. The structure analysis of the com-
pounds reveals that they can be grouped into two classes,
probably binding to overlapping but not identical binding
sites within the receptor. A similar classification of biogenic
amine ligands has been proposed earlier by Jacoby et al.[5] We

thus selected two diverse training sets covering chemotype ex-
amples of each class: class II antagonists are represented by
6 compounds revealing 2 aromatic rings and a positively ioniz-
able group positioned 2–4 bond lengths from the aromatic
features, while the 14 representatives of class I antagonists
reveal a positively ionizable group which is separated from the
first aromatic ring by 2–3 bond lengths and from the second
aromatic ring by 6–7 bond lengths. Table 2 and Scheme 1
show the chemical structures of all training-set compounds,
together with the reported binding affinities.

Serotonin 5-HT2A receptor antagonists with a Ki value of less
than 10 nm when tested against the recombinant human wild-

type receptor (as determined in a radioligand displacement
assay by using ketanserin as the radioligand) were extracted
from the Aureus database. The structure analysis of the com-
pounds reveals that they can be grouped into two classes. Ac-
cordingly, two diverse training sets covering chemotype exam-
ples of each class were selected: class I antagonists are repre-
sented by six compounds revealing two aromatic rings con-
nected to polar hydrogen-bond donor and acceptor groups
(“head” and “tail” groups) and a positive ionizable group posi-
tioned two to four bond lengths from the aromatic features,
while the three representatives of class I antagonists reveal
purely hydrophobic aromatic head groups. The chemical struc-
tures of all training-set compounds and the reported binding
affinities are shown in Table 3 and Scheme 2.

Dopamine D2 receptor antagonists with a Ki value of less
than 25 nm when tested against the recombinant human wild-
type receptor (as determined in a radioligand displacement
assay by using spiperone as the radioligand) were extracted

Table 2. Training-set molecules for the a1A adrenergic receptor and their
affinity.

Class Compound Ki [nm][a]

I 1 0.2
I 2 0.2
I prazosin 0.3
I NAN 190 0.4
I RS 17053 0.5
I 3 0.5
I doxazosin 0.8
I 4 1.0
I 5 2.8
I 6 4.6
I cyclazosin 12.3
I 7 27.1
I 8 44
I 9 72.4
II YM 617 0.04
II WB 4104 0.1
II ARC 239 0.4
II BE 2254 0.4
II spiperone 25.1
II 10 28.2

[a] Ki values are taken from the following references: 1 and 2,[24] prazo-
sin,[25] NAN 190, 6, 7, and 10,[26] RS 17053 and YM617,[27] 3, and 9,[28] doxa-
zosin, 5, WB 4104, ARC 239, BE 2254,[29] 4,[30] cyclazosin,[31] 8,[32] and spiper-
one.[33]
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from the Aureus database. The structure analysis of the com-
pounds reveals that they can be grouped into two classes. We
thus selected two diverse training sets covering chemotype ex-
amples of each class: class I antagonists are represented by
four compounds revealing two aromatic rings connected to
polar hydrogen-bond donor and acceptor groups (head and

tail groups) and a positive ionizable group positioned two to
four bond lengths from the aromatic features, while the six
representatives of class II antagonists show purely hydrophobic
aromatic head groups (similar to the 5-HT2A class II antago-
nists). Table 4 and Scheme 3 reveal the chemical structures of
all training-set compounds and the reported binding affinities.

Scheme 1. Adrenergic a1A receptor anatagonists used as training-set compounds.
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Scheme 2. Serotonin 5-HT2A receptor anatagonists used as training-set compounds.

Table 3. Training-set molecules for the 5-HT2A receptor and their affinity.

Class Compound Ki [nm][a]

I ketanserin 0.9
I S 18327 3.2
I spiperone 1.0
I MDL 100,907 0.8
I 11 14
I 12 4.9
II minanserin 3.0
II ritanserin 1.0
II cyproheptadine 1.6

[a] Ki values are taken from the following references: ketanserin,[34]

S 18327,[35] spiperone and ritanserin,[21] MDL 100,907, 11, and 12,[36] minan-
serin,[37] and cyproheptadine.[38]

Table 4. Training-set molecules for the D2 receptor and their affinity.

Class Compound Ki [nm][a]

I spiperone 0.1
I haloperidol 1.4
I risperidone 2.3
I domperidone 0.4
II clozapine 28.0
II chloropromazine 13.6
II flupentixol 1.2
II RMI 60947 21.0
II loxapine 54.0
II eticlopride 0.1

[a] Ki values are taken from the following references: spiperone, risperi-
done, and domperidone,[39] haloperidol,[40] clozapine,[41] chloroproma-
zine,[42] flupentixol,[43] RMI 60947,[44] loxapine,[45] and eticolpride.[46]

Scheme 3. Dopaminergic D2 receptor anatagonists used as training-set compounds.
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Pharmacophore generation : The common-features hypothesis
generation (Hiphop) module of Catalyst 4.7[6] was used for the
generation of “cross-chemotype” 3D pharmacophores describ-
ing either the a1A, the 5-HT2A, or the D2 antagonists. The
common-features hypothesis generation module is designed
specifically for finding chemical features shared by a set of di-
verse compounds (different chemical classes) and for providing
the relative alignments of the compounds, with the hypothesis
expressing these common features (see the Experimental Sec-
tion for details). For each training set, ten pharmacophore hy-
potheses were generated (three in the case of the 5-HT2A class
II training set). All hypotheses were visually inspected by map-
ping onto the training-set molecules. The major difference
among the ten models (three in the case of the 5-HT2A class II
training set) generated from each training set was the map-
ping of the aromatic rings, either by the ring aromatic (RA) or
by the hydrophobic (HY) functions. Only minor differences in
the orientation of the RA vector were observed. Considering
that all the generated pharmacophores map the training-set
molecules in a similar way, the first model, the one ranked
highest by the Catalyst scoring function (mapping all training-
set molecules without partial matches if possible), was chosen
for subsequent analysis and refinement in most cases. The
pharmacophore features of the selected hypotheses are listed
in Table 5. Only for the dopaminergic D2 class I training set
was the first hypothesis not chosen; instead, the rank 4 hy-
pothesis was chosen as it appeared superior due to an ener-
getically more favorable conformation of spiperone mapping
the hypothesis.

In order to improve the quality of the 3D pharmacophores,
which means improving the quality of the generated relative

compound alignments and the predictive power of the data-
base searches, Catalyst allows the addition of spatial informa-
tion. Based on the conformation of the respective lead (“princi-
pal”) molecule mapping the 3D pharmacophore, a shape query
was generated for each lead molecule and merged with the
respective 3D pharmacophore.

Description of GPCR antitarget pharmacophores

The common-feature pharmacophores (including the shape re-
straints) for the a1A, 5-HT2A, and D2 receptors derived from the
training-set molecules (two sets for each receptor) are depict-
ed in Figure 1 a–f. Two pharmacophores have been derived for
each of the three biogenic amine receptors and these describe
the key structural features required for the receptor binding
seen in the structurally diverse antagonists of these receptors.

Table 5. Common-feature pharmacophore hypotheses generated for bio-
genic amine receptors.

Receptor Training N[a] Selected Features[b]

set hypothesis

adrenergic a1A class I 10 hypo 1 PI, HY, HY, HBA, HY (5)
class II 10 hypo 1 PI, RA, HY, RA (4)

serotonin 5-HT2A class I 10 hypo 1 PI, HYA, HYA, HBA (4)
class II 3 hypo 1 PI, RA, HY (3)

dopaminergic D2 class I 10 hypo 4 PI, RA, HY, HBA, HBA (5)
class II 10 hypo 1 PI, RA, HY, HY (4)

[a] Number of hypotheses. [b] Abbreviations of features: HBA = hydrogen-
bond acceptor, HY = hydrophobic, HYA = hydrophobic aromatic, PI = posi-
tively ionizable, RA = ring aromatic.

Figure 1. Common-feature pharmacophores of three biogenic amine GPCR antitargets. A reference molecule from the training set has been mapped onto each
pharmacophore. a) The adrenergic a1A (class I) pharmacophore model is aligned to prazosin; B) the adrenergic a1A (class II) pharmacophore model is aligned to
compound 10 ; C) the serotonin 5-HT2A (class I) pharmacophore model is aligned to spiperone ; D) the serotonin 5-HT2A (class II) pharmacophore model is aligned to
minanserin ; E) the dopaminergic D2 (class I) pharmacophore model is aligned to spiperone ; F) the dopaminergic D2 (class II) pharmacophore model is aligned to
clozapine. The color scheme is red for positively ionizable (PI), green for hydrogen-bond acceptors (HBA), light blue for hydrophobic or hydrophobic aromatic (HY
or HYA), and orange for ring aromatic (RA) pharmacophoric features. Shape restraints are shown in light blue.
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Adrenergic a1A receptor pharmacophores : The two common-fea-
ture a1A pharmacophores mapping the two different classes of
high-affinity ligands of this adrenergic receptor subtype are
shown in Figure 1 a and b. The class I pharmacophore repre-
sents a five-point pharmacophore, which is composed of three
hydrophobic moieties connected though a positively ionizable
group (matched in Figure 1 a by the N2 group of the quinazo-
line ring of the mapped compound prazosin) and a hydrogen-
bond acceptor group (mapped by the amide group of prazo-
sin). The class II pharmacophore describes the four main phar-
macophoric points of the smaller class of a1A ligands lacking
the hydrogen-bond acceptor group but comprising two ring
aromatic features, one hydrophobic moiety, and one positively
ionizable feature (Figure 1 b, mapping shown for 10).

The similarity of the right-hand part of both pharmaco-
phores (class I : positively ionizable, hydrophobic, hydrophobic;
class II : positively ionizable, hydrophobic, ring aromatic) indi-
cates that the head groups of class I and class II ligands map-
ping this part of the pharmacophore interact with the same
site at the adrenergic receptor. However, the pharmacophores
also reflect the differences among the two different types of
a1A receptor antagonists in the left-hand part. Class I ligands
appear to share an acceptor group and a second hydrophobic
group separated from the central positive charge by 9.5 � (5–
6 bond lengths). The shorter class II ligands, however, reveal an
aromatic group connected by only 7.2 � (2–4 bond lengths) to
the positively charged nitrogen atom.

A pharmacophore model for the a1A adrenergic receptor has
also been described before by others.[7, 8] Barbaro et al. used a
series of pyridiazionone derivatives based on biological data
from the rat receptor as a training set.[7] Their model resembles
the class I pharmacophore described above in terms of phar-
macophoric points and was shown to be well suited for a
quantitative prediction of the biological activity of the train-
ing-set molecules and chemically closely related series. Howev-
er, it does not represent a cross-chemotype model suitable for
mapping a diverse set of different a1A chemical compounds.
The model generated by Bremner et al. , on the other hand,
was derived from a diverse set of 38 compounds.[8] However, it
comprises only three pharmacophoric features and is thus
quite generic and cannot be expected to be very selective.

Serotonin 5-HT2A receptor pharmacophores : The structural differ-
ences among 5-HT2A antagonists are more evident than those
of the a1A chemotypes (Scheme 2). Class I 5-HT2A antagonists
are characterized by a positively ionizable group in the center
of the molecule, a head group comprising an aromatic ring
with polar functions, and a tail group containing an aromatic
ring. Class II antagonists, on the other hand, share the positive
charged nitrogen atom but also reveal a nonpolar hydrophobic
head group, composed of two conformationally restricted aro-
matic rings. The tail function can be missing (for example, in
minanserin) or present (for example, in ritanserin). The differen-
ces within the chemical structures are captured within the two
pharmacophores generated for class I and class II 5-HT2A antag-
onists and shown in Figure 1 c and d. The class I pharmaco-
phore is made up of four pharmacophoric features (positively

ionizable, two hydrophobic aromatic features, and a hydrogen-
bond acceptor), which are mapped by all molecules of the
training set. Spiperone is a subnanomolar D2 antagonist,
which reveals significant affinity towards the 5-HT2A receptor
(Ki = 1 nm) and has thus been included into the class I 5-HT2A

training set. The mapping of spiperone onto the class I 5-HT2A

pharmacophore is revealed in Figure 1 c: the affinity of spiper-
one to the 5-HT2A receptor seems to be mediated mainly by
the spiropiperidine moiety mapping three of the four pharma-
cophoric points and is supported by the aromatic ring of the
butyrophenone tail. The class II pharmacophore on the other
hand is formed by only three pharmacophoric points: a posi-
tively ionizable group, a ring aromatic feature, and a hydro-
phobic group (Figure 1 d, mapping shown for minanserin). The
pharmacophore reflects the chemical features of the class II
antagonists mediating affinity towards the 5-HT2A receptor.

A comparison of the two pharmacophores suggests that
both types of 5-HT2A receptor antagonists utilize similar inter-
action points at their receptor to harbor the positively ioniza-
ble group and a hydrophobic aromatic ring of the head group.
For class II inhibitors these interaction points appear to be sup-
plemented by an additional interaction of the other aromatic
ring with the receptor. Class I inhibitors, in contrast, appear to
address a hydrogen-bond donor in the receptor, thereby ex-
plaining the hydrogen-bond acceptor group found within
these ligands. Moreover, they appear to have an additional
interaction site within the receptor mediated by the hydro-
phobic aromatic feature in the tail group.

Dopaminergic D2 receptor pharmacophores : Like the 5-HT2A li-
gands, the antagonists of the dopaminergic D2 receptor can
be classified into two groups (Scheme 3). Class I antagonists
(for example, spiperone, haloperidol, risperidone, or domperi-
done) are characterized by a positively ionizable group in the
center of the molecule, a head group comprising an aromatic
ring with polar functions and an aromatic tail. Class II antago-
nists, on the other hand, lack the tail group and possess a
head composed solely of aromatic and hydrophobic features.
The two D2 pharmacophores are shown in Figure 1 e and f,
mapped onto one representative molecule of each training
set. The class I five-point pharmacophore possesses positively
ionizable, hydrophobic, ring aromatic, and two hydrogen-bond
acceptor features. The class I D2 pharmacophore is thus very
similar to the class I 5-HT2A pharmacophore. This is not a sur-
prising finding as several biogenic amine ligands bind to both
receptors with nanomolar affinity (for example, spiperone). In
comparison to the 5-HT2A model, the D2 pharmacophore sug-
gests one additional interaction point of the D2 ligands at the
receptor mediated through the hydrogen-bond acceptor fea-
ture within the tail group. The similarity of the pharmaco-
phores also indicates that the 5-HT2A and D2 receptor binding
pockets harboring the class I 5-HT2A and D2 ligands have a
high degree of similarity. The comparison suggests that the D2
receptor site might offer an additional hydrogen-bond donor
group to bind the hydrogen-bond acceptor function found
within the tail group of the D2 ligands.
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The class II pharmacophore of the dopaminergic receptor is
made up by four features: two hydrophobic groups, one aro-
matic ring, and one positively ionizable group. As for the
class I model, similarities to the equivalent (class II) 5-HT2A phar-
macophore model are visible. The pharmacophores differ in
that the D2 pharmacophore possesses one additional hydro-
phobic feature, which is present in most class II D2 antagonists
(for example, chloro substituents seen for loxapine and eti-
clopride). The similarity of both pharmacophores again sug-
gests a high degree of similarity of the 5-HT2A and D2 receptor
binding pockets addressed by the class II 5-HT2A and the D2
ligands.

Validation of antitarget pharmacophores

The purpose of the common-feature antitarget pharmaco-
phores is to recognize and rationalize antitarget side affinities
within novel GPCR chemotypes different from those present in
the Aurues training set. Therefore, it appears to be crucial to
validate the pharmacophore hypotheses by using sets of exter-
nal molecules not used for pharmacophore generation. Our
aim was to verify that the pharmacophore is able to identify
known a1A, 5-HT2A, and D2 antagonists and, thus, to verify the
predictive ability of the pharmacophores. Towards this end, we
performed a virtual screen of compound subsets extracted
from the MDL Drug Data Report (MDDR; for details, see the Ex-
perimental Section):[9] 50 known a1A, 5-HT2A, and D2 inhibitors
were extracted from the MDDR database and embedded into
approximately 1000 MDDR molecules lacking the appropriate
affinity (activity not stated in the MDDR database). The compo-
sition of each of the three test-set databases is shown in
Table 6. To mark the predictive power of each pharmacophore,

the hit rates (percentage of “true actives” in list of virtual hits)
and yields (percentage of true actives identified by virtual
screening) were calculated.

Adrenergic a1A receptor pharmacophores : By virtual screening of
the MDDR test set enriched with 50 a1A ligands (Table 6) with
the class I (class II) pharmacophore models, 82 (146) virtual hits
were obtained for which 26 (42) are stated as a1A antagonists
(true actives). The hit rate was calculated as approximately
30 % with both pharmacophores (see Table 7), which is 6 times
higher than a random selection (4.8 %). It is evident that the
very restrictive class I 5-point pharmacophore misses approxi-
mately half of the 50 a1A ligands embedded in the set (yield
52 %). Thus, several series of a1A antagonists present within the
MDDR set do not belong to the class I a1A receptor ligands. In

contrast, the class II pharmacophore identifies most of the a1A

antagonists within the set (yield 84 %) and reveals excellent
specificity, reflected by a good hit rate. The virtual screening
thus suggests that the less stringent class II four-point pharma-
cophore is especially suitable for recognizing most of the
known a1A antagonists and providing mappings of compounds
with significant a1A affinity. Taken together, both pharmaco-
phores are able to identify 90 % of the a1A antagonists embed-
ded into the test data set.

In many cases the performance of a pharmacophore-based
virtual screen can be improved when the quality of the map-
ping to the respective pharmacophore is considered. Thus, we
calculated the fit values of all test-set molecules onto both
pharmacophores and ranked the virtual hits by the fit value of
their mappings (see the Experimental Section). The resulting
enrichment graphs are shown in Figure 2 for both pharmaco-
phores. Both enrichment curves show a steep initial line run-
ning almost parallel to the ideal curve. The flattening of the
curves towards the right-hand side can be explained by the
fact that some a1A database compounds cannot be mapped
by the pharmacophore and thus obtain fit values of 0. The
steepness of the enrichment curve on the left-hand side, how-
ever, reflects the fact that a high percentage of true a1A ligands
can be found among the top-ranked compounds of the data-
base. (For example, among the top 10 scored virtual hits found
by the class II pharmacophore, 6 are a1A antagonists; this indi-
cates a hit rate of 60 % among the top 1 % of the virtual hits.)
Hit values, yield, and enrichment factor (found hit rate versus
random hit rate) are listed in Table 8 for the top 5 % scorers of
both pharmacophores. Among the top 5 % (52 highest ranked
compounds) scorers of the database, 44 % and 50 % of the a1A

antagonists can be found by using the class I or class II phar-
macophore as a filter, respectively. In addition to this excellent

Table 6. MDDR test-set databases used for pharmacophore validation.

MDDR test set Inactives[a] Actives[a]

a1A 998 50
5-HT2A 979 50
D2 990 50

[a] Inactive and active compounds as stated within the MDDR database.

Table 7. Hit rates and yields from screening the MDDR test-set database
with the a1A, 5-HT2A, and D2 pharmacophores, respectively. The hit rate and
yield are given for a virtual-screening protocol without considering the fit
value of the virtual hits for ranking.

No. of No. of Hit Yield
virtual identified rate[a]

hits true actives[a]

a1A class I 82 26 32 % 52 %
class II 146 42 29 % 84 %
class I or II 168 45 27 % 90 %

5-HT2A class I 69 16 23 % 32 %
class II 207 35 17 % 70 %
class I or II 239 40 17 % 80 %

D2 class I 63 21 33 % 42 %
class II 207 41 20 % 82 %
class I or II 219 42 19 % 84 %

[a] Hit rate = (number of true actives in hit list)/(number of compounds in
hit list) � 100; yield = (number of true actives in hit list)/(number of true
actives in full database). The hit rate is calculated based on the assump-
tion that all the compounds with MDDR-stated activity are active (true ac-
tives) and all the compounds with no stated activity against this target
are inactive. However, it cannot be excluded that some of the inactive
compounds identified by the pharmacophore hypothesis reveal actual
activity on that target. The hit rate would thus be higher.
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yield, enrichment factors of approximately nine and ten,
respectively, can be obtained by the pharmacophores when
the hit rate of the pharmacophore-based selection is com-
pared to a random selection. The hit rate is calculated based
on the assumptions that all compounds with a1A activity re-
ported in the MDDR are active and that compounds with no
a1A activity reported in the MDDR against this target are inac-
tive. However, the possibility cannot be excluded that some of
the stated inactive compounds identified by the pharmaco-
phore hypothesis reveal activity on the a1A receptor. Among
the top ten scored virtual hits, six are stated a1A antagonists.
The remaining four compounds have stated activity against se-
rotonin receptors. Thus, a (cross-)activity towards the a1A re-

ceptor is likely, which suggests even higher hit rates and yields
than calculated.

At this point, it should also be noted that the excellent hit
rate and yield generated, by the class II pharmacophore espe-
cially, cannot be explained by the structural similarity of MDDR
test-set molecules to the Aureus training-set molecules. Tani-
moto distances from the 50 a1A antagonists within the MDDR
test-set molecules have been calculated to all 6 molecules
from the Aureus training data set (see the Experimental Sec-
tion). Only 2 MDDR a1A antagonists reveal a similarity of >0.8,
for another 6 the Tanimoto distance is between 0.5 and 0.8,
and for the remaining 42 a similarity of <0.5 is calculated
(based on Unity fingerprints). Figure 2 reveals that the yield
and hit rate generated by ranking the database compounds
based on their maximal Tanimoto similarity (green curve) to
the six reference molecules is not significantly higher than a
random selection.

The excellent performance in terms of yield and enrichment
factor of both pharmacophores suggests that both pharmaco-
phores can also be useful filters for virtual screening to identify
a1A antagonists within large compound repositories. Indeed,
both pharmacophores have been successfully applied at Aven-
tis in a virtual-screening approach combining pharmacophore-
based and homology-model-based virtual screening.[10] By
using this approach, novel a1A antagonists with nanomolar
affinity could be identified from the company’s compound
collection.

Serotonin 5-HT2A receptor pharmacophores : The virtual screen-
ing of the MDDR test set enriched with 50 5-HT2A ligands
(Table 6) with the 4-point class I pharmacophore and with the
more generic 3-point pharmacophore for class II ligands pro-
vided 69 (class I) and 207 (class II) virtual hits. Within the list of
these virtual hits, 16 (class I) and 35 (class II) 5-HT2A antagonists
were covered, thereby giving hit rates of 23 and 17 %, respec-
tively (see Table 7). It is evident that the class I four-point phar-
macophore is able to recognize most of the class I 5-HT2A

antagonists and is also selective in terms of not mapping too
many MDDR entries with no stated 5-HT2A affinity (hit rate
23 %). However, it fails to recognize the structurally different
class II 5-HT2A antagonists, which are frequently represented
within the MDDR test set. The class II pharmacophore, on the
other hand, identifies many of the 5-HT2A antagonists within
the MDDR test set (yield 70 %) but lacks the good selectivity
(hit rate 17 %). Taken together, both cross-chemotype pharma-
cophores identify 80 % of all stated 5-HT2A antagonists within
the MDDR test set.

As with the a1A pharmacophores, we attempted to improve
the hit rate and yield of the virtual screens by considering the
fit value of their mappings. For both virtual screens, the fit
values of the mappings of the virtual hits were calculated and
the data base compounds were ranked according to their indi-
vidual fit values as well as based on the sum of the fit values
found for the mapping on either pharmacophore. The enrich-
ment plots are shown in Figure 3. As seen for the a1A pharma-
cophores, both enrichment curves show a steep beginning,
which reflects the fact that a high percentage of true 5-HT2A li-

Figure 2. Enrichment graph for virtual screening of 50 known a1A antagonists
embedded in the 1048 compound random MDDR library. The curve shows the
relative ranking of the known antagonists. Database compounds are ranked
along the x axis based on the fit value. The hit rate obtained by the class II
pharmacophore (magenta) at a yield of 50 % is tenfold better than random
selection.

Table 8. Hit rate, yield, and enrichment factors for the top 5 % scorers from
screening the MDDR test-set database with the a1A, 5-HT2A, and D2 pharma-
cophores, respectively. All compounds have been scored based on their fit
value on the respective pharmacophore.

No. of true actives Hit Yield Enrichment
among the top rate[a] factor
5 % of database[a]

a1A class I 22 42 % 44 % 8.8
class II 25 48 % 50 % 10

5-HT2A class I 14 27 % 28 % 5.7
class II 13 25 % 26 % 5.3
class I + II 21 41 % 42 % 8.5

D2 class I 20 39 % 40 % 8.1
class II 10 20 % 20 % 4.2
class I + II 12 24 % 24 % 5

all random 2.5 4.8 % 5 % 1
ideal 50 98 % 100 % 20

[a] Hit rate and yield are defined in the footnote of Table 7. The hit rate is
calculated based on the same assumptions as those given in the footnote
of Table 7. It is therefore possible that the hit rate and enrichment factor
are actually higher.
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gands can be found among the top-ranked compounds of the
database (top 1–10 %). Again, a flattening of the curves is
seen, at 6 % (class I) or 14 % (class II) on the x axis, because not
all 5-HT2A inhibitors embedded in the data set can be mapped.
A consensus ranking based on the sum of the fit values ob-

tained for the mappings on both pharmacophores (blue curve)
appears to provide the best results. Hit values, yield, and en-
richment factor are listed in Table 8 for the top 5 % scorers ob-
tained. The values show that, among the top 5 % virtual hits
scored by the class I and class II pharmacophores, 42 % of all
embedded 5-HT2A antagonists are found and hit rates 8.5
times higher than those with a random selection can be ob-
tained. The virtual screening of the MDDR data set reveals that
the 5-HT2A pharmacophores appear to be suitable for recogniz-
ing most 5-HT2A antagonists and for providing pharmacophore
mappings of compounds with significant 5-HT2A affinity.

Dopaminergic D2 receptor pharmacophores : The virtual screen-
ing of the MDDR test set enriched with 50 D2 ligands (Table 6)
with the 5-point class I pharmacophore and with the more ge-
neric 4-point pharmacophore for class II ligands provided 63
(class I) and 207 (class II) virtual hits. Within the list of these vir-
tual hits, 21 (class I) and 41 (class II) D2 antagonists were cov-
ered, thereby givng hit rates of 33 % and 20 %, respectively
(versus a hit rate of 5 % for random selection; Table 7). It is evi-
dent that the class I five-point pharmacophore is able to recog-
nize most of the class I D2 antagonists and is also selective in
terms of not mapping too many MDDR entries with no stated
D2 affinity (hit rate 33 %). However, it fails to recognize the
structurally different class II D2 antagonists, which are fre-
quently represented within the MDDR test set; this explains
the yield of just 42 %. The class II pharmacophore, on the other
hand, identifies many D2 antagonists within the MDDR test set
(yield 82 %) but lacks the selectivity, in that it also maps

166 compounds within the database that do not have explicit-
ly stated D2 antagonism.

As with the a1A pharmacophores, we attempted to improve
the hit rate and yield of the virtual screens by considering the
fit value of their mappings. For both virtual screens, the fit
value of the mappings of the virtual hits were calculated and
the data base compounds were ranked according to their indi-
vidual fit values as well as based on the sum of the fit values
found for the mapping on either pharmacophore. Table 8 sum-
marizes hit rates and yields for the top 5 % scorers. The table
reveals that the hit rate of the class I D2 pharmacophore could
be slightly improved when the fit value is considered for the
ranking of the virtual hits.

Guidance of chemical optimization to improve side-affinity
profiles

In order to monitor affinity profiles of novel drug candidates
during compound optimization, as well as of compounds
within GPCR-hit-finding libraries, Aventis has established a
panel of biogenic amine receptor binding assays. Up to now,
several hundred compounds coming from GPCR-directed libra-
ries or originating from Aventis drug-discovery programs have
been profiled against the Aventis biogenic amine antitarget
panel. Table 9 lists the relative frequency of observed side af-
finities. The experimental data reveal that approximately 14 %
of the profiled compounds have moderate (IC50<1 mm) a1A af-
finity in the submicromolar range. The frequency of observed
moderate (IC50<1 mm) 5-HT2A affinity is 9 %. 3.5 % of all tested

compounds reveal strong a1A binding with affinities of less
than 100 nm. Strong 5-HT2A affinity is seen with the same fre-
quency. These experimental results reveal the need for optimi-
zation of the side-affinity profile of several compounds for the
further development of these drug candidates.

The main application of the generated common-feature anti-
target pharmacophore hypotheses is the recognition of antitar-
get side affinities within novel chemotypes. The aim is to use
the pharmacophores to rationalize the experimental findings
by providing the pharmacophore mappings. Recognition of
the key chemical features that are responsible for the side af-
finities could then provide guidance for the chemical optimiza-
tion of these series towards compounds with a more favorable
side-affinity profile.

80 % of all experimentally identified a1A binders could be
mapped onto the class II a1A pharmacophore (for details, see
the Experimental Section) fulfilling all four pharmacophore
points and the generated shape requirement. (Only 50 % of

Figure 3. Enrichment graph for virtual screening of 50 known 5-HT2A antago-
nists embedded in the 1029 compound random MDDR library. The curve shows
the relative ranking of the known antagonists. Database compounds are
ranked along the x axis based on the fit value. The hit rate obtained by the
sum of the class I and class II pharmacophore at a yield of 50 % is eightfold
better than random selection.

Table 9. Relative frequency of IC50 values observed against GPCR anti-
targets.

IC50<100 nm IC50<1 mm

a1A 3.5 % 14 %
5-HT2A 3.5 % 9 %
D2 0 % 0.6 %
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the weak binders could be mapped without allowing partial
matches, a result indicating that approximately half of the
weaker compounds lack at least one pharmacophoric point of
the four-point pharmacophore.) Mapping of one of these com-
pounds onto the a1A class II pharmacophore is shown in
Figure 4. The mapping directly indicates the chemical features

that are mediating the strong affinity towards this subtype of
the adrenergic receptor : These are the positive charge of the
piperazine moiety, the ortho-substituted phenyl ring on posi-
tion 4 of the piperazine, and the aromatic ring of the benzyl
chain. The mapping onto the class II pharmacophore thus pro-
vides direct guidance for the chemical optimization of the re-
spective series to avoid the undesired a1A affinity (for example,
removal of the chlorine substituent within the 4-phenyl pipera-
zine).

Mapping of pharmacophore models into receptor sites

Numerous site-directed mutagenesis studies have provided a
conclusive picture for molecular interactions between the
receptor-activating biogenic amines (for example, serotonin,
epinephrine, dopamine) and their respective receptors:[11–15] a
highly conserved aspartate residue in transmembrane helix
TM3 (Asp3.32 according to the Ballesteros–Weinstein nomen-
clature), conserved serine residues in TM5 (for example,
Ser5.42 and Ser5.46 for a1A), and hydrophobic phenylalanine
residues from TM6 have been identified to be important for
agonist binding. In addition, through mutational studies and
comparative affinity determinations based on ligand binding,
the essential amino acids involved in antagonist recognition
have been identified for the a1A,[15–17] 5-HT2A

[18, 19] and D2 recep-
tors.[14, 19] According to these studies, the binding pocket of the
prototype biogenic amine receptor antagonist stretches from
the agonist binding site formed by TM3, TM5, and TM6—inter-
acting with the antagonist’s head group—towards the trans-
membrane helices TM1, TM2, and TM7, which have been sug-
gested to harbor the lipophilic tail moiety of several antago-
nists.

Based on these experimental data, topographical interaction
models for all three biogenic amine receptors have been gen-
erated (Figure 5). The generated pharmacophore models have
been mapped into the topographical interaction models to
suggest the putative interaction points of each pharmacophor-
ic feature with its receptor:

1) The positive ionizable pharmacophoric feature is thought
to be anchored through a salt bridge to the conserved
aspartate residue in TM3.

2) The hydrophobic and aromatic features of the head moiet-
ies are harbored within hydrophobic microdomains formed
by aromatic and aliphatic side chains of TM4, TM5, and
TM6. The “floor” of this hydrophobic microdomain is
formed by several conserved aromatic amino acids
(Phe6.44, Trp6.48, Phe5.47), which are conserved among
the family of biogenic amine GPCRs, a fact also explaining
the similarity of the pharmacophoric features.

3) The polar residue at position 6.55 (asparagine in 5-HT2A, his-
tidine in D2) might address the hydrogen-bond acceptor
group found within many class I 5-HT2A and class I D2 li-
gands (Figure 5 c, e). In contrast, within the a1A receptor the
residue 6.55 is a methionine; this provides a possible ex-
planation for the fact that in this receptor only hydro-
phobic (aromatic) pharmacophoric features appear to be
essential for strong a1A binding.

4) The hydrophobic or ring aromatic feature observed within
the tail moiety of almost all a1A antagonists, as well as
within class I 5-HT2A and class I D2 ligands, is likely to be di-
rected towards aromatic and hydrophobic residues within
helices TM3 (3.28) and TM2 (2.64; Figure 5 a–c, e).

5) A threonine residue in position 7.39 could act as a hydro-
gen-bond donor to the hydrogen-bond acceptor feature
seen within the class I D2 pharmacophore (Figure 5 e). A
possible interaction partner for the hydrogen-bond accept-
or within the a1A class I pharmacophore could be Lys7.36
(not shown). However, this possiblity still needs to be vali-
dated by experimental mutagenesis data.

6) Less is known about the interaction sites for class II 5-HT2A

and D2 antagonists, which lack the hydrophobic tail
moiety seen in class I antagonists. Comparison of the phar-
macophores indicates that the class II antagonists bind into
the agonist binding site (located between TM3, TM5, and
TM6) as depicted in Figure 5 d, f.

Conclusion

In conclusion, we present 3D “cross-chemotype” pharmaco-
phore models for the a1A, the 5-HT2A, and the D2 receptors.
Two pharmacophore models have been generated for each re-
ceptor to cover the main structural classes of a1A, 5-HT2A, and
D2 antagonists. The pharmacophores have been generated
from diverse training sets and describe the key pharmacophor-
ic features present within these biogenic amine antagonists.
All six pharmacophore models presented here offer acceptable
levels of predictivity as revealed by virtual screening of MDDR

Figure 4. Pharmacophore mapping of a high-affinity a1A binder identified with-
in the Aventis antitarget panel mapped onto adrenergic a1A (class II) pharma-
cophore model. All pharmacophoric points are mapped. The alignment sug-
gests that removal of the chlorine substituent from the 4-phenylpiperidine will
reduce the unfavorable side affinity for the a1A receptor.
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test sets, from which the models retrieved embedded antago-
nists with good yields and enrichment factors. The validation
made on ligands taken from the MDDR database reveals that
the models are indeed predictive for compounds different
from those used for pharmacophore generation and that they
recognize most structural classes of a1A, 5-HT2A, and D2 antag-
onists. Application of the a1A model in a virtual screening ap-
proach in fact shows that the pharmacophores can be useful
filters to identify a1A antagonists within large compound repo-
sitories. A combination of a pharmacophore-based search with
homology-model-based virtual screening provided novel a1A

antagonists with nanomolar affinity from the company’s com-
pound collection.[10]

Most important, however, is the application of these phar-
macophore models in understanding the side affinities for bio-
genic amine receptors found for numerous new GPCR drug
candidates. The pharmacophore model was able to identify
80 % of the strong a1A binders (IC50 value in radioligand dis-
placement<100 nm) coming from Aventis (GPCR) projects and
GPCR-targeted libraries, thereby allowing the recognition of
the key chemical features that mediate this side affinity within
these series. First applications of the a1A adrenergic model
reveal that these in silico tools can be used to guide the chem-
ical optimization towards clinical candidates with fewer a1A-
mediated side effects (orthostatic hypotension, dizziness, faint-
ing spells). All the presented models may be used in conjunc-
tion with existing in vitro methods to avoid undesired side af-
finities on these GPCR antitargets and to support the discovery
of GPCR drugs with favorable clinical safety profiles.

Experimental Section

Pharmacophore generation : The chemical structures of all com-
pounds in the training set were imported directly from the Aureus
database (by using the sd file format). The molecules were manual-
ly inspected to ensure that no corrupted chemical structures were
imported. In order to reflect the correct protonation state,[7] the N2
atom of the quinazoline ring of prazosin derivatives in the a1A

training sets was manually protonated by using the 2D and 3D
sketcher of Catalyst;[6] this was necessary to allow Catalyst to rec-
ognize the N2 nitrogen atom as the positively ionizable group

during pharmacophore generation. A conformational set was gen-
erated for each molecule by using the poling algorithm and the
“best-quality conformational analysis” method, based on the
CHARM m force field (Catalyst catConf module). All conformers
within 20 kcal mol�1 in energy from the global minimum were con-
sidered for the pharmacophore generation. For each data set, one
molecule (a representative of the class with good affinity and a
small number of conformers) was chosen as the principal molecule
(adrenergic a1A (class I): prazosin; adrenergic a1A (class II): com-
pound 10 ; serotonin 5-HT2A (class I): spiperone; serotonin 5-HT2A

(class II): minanserin; dopaminergic D2 (class I): spiperone; dopami-
nergic D2 (class II): clozapine). For the principal molecule, all of its
chemical features are considered in building hypothesis space. For
all other molecules within the training set, a principal value of one
was chosen and the “MaxOmitFeat” column was set to one, there-
by allowing only hypotheses with features that are mapped com-
pletely by all compounds of the training set or hypotheses for
which only one pharmacophoric feature is missed by a training-set
molecule. The following features, included in Catalyst’s features
dictionary, were considered for the generation of common-feature
hypothesis: positively ionizable (PI), hydrophobic (HY), hydropho-
bic aromatic (HYA), ring aromatic (RA), hydrogen-bond donor
(HBD), and hydrogen-bond acceptor (HBA). In order to improve
the quality of the 3D pharmacophores, Catalyst allows the addition
of spatial information. Based on the conformation of the respective
lead (principal) molecule mapping the 3D pharmacophore, a shape
query was generated for each lead molecule and merged with the
respective 3D pharmacophore. The tolerances for the shape quer-
ies (box volume match and similarity tolerance) were chosen in
such a way that the mapping of the test-set molecules was not re-
stricted by the presence of the shape restraint (similarity tolerance:
40 %; box volume match: 70–130 % for class I models, 50–150 % for
class II models).

Generation of MDDR test-set database and virtual screening :
The MDDR is an annotated database covering the patent literature,
journals, meetings, and congresses and containing over 141 000
biologically relevant compounds and well-defined derivatives such
as drugs launched or under development. To make the test sets,
the MDDR database was filtered for a1A, 5-HT2A, and D2 antagonists
and three compound sets were generated containing MDDR mole-
cules enriched with a1A, 5-HT2A, and D2 antagonists. It should be
noted that compounds could reveal affinity against one of these
antitargets even though no activity is explicitly stated within the
MDDR. The content of each database set is reflected in Table 6.
The three subsets were converted for Catalyst by using the catConf
option. In order to reflect the correct protonation state,[7] the N2
atom of the quinazoline ring of prazosin derivatives in the a1A test
sets was manually protonated by using the 2D and 3D sketcher
of Catalyst. For each molecule, a conformational set within
20 kcal mol�1 of energy from the global minimum was generated.
The databases were virtually screened by using the two respective
3D pharmacophore hypotheses (class I and class II) with the citest
option within Catalyst. Only those compounds mapping all phar-
macophoric features were retrieved as virtual hits (omit parameter
set to zero). In order to evaluate the performance of the virtual
screen, two properties of each generated virtual hit list were com-
puted: the hit rate and the yield. The hit rate describes the per-
centage of true actives in the list of virtual hits (hit rate = number
of true actives in hit list/number of compounds in hit list � 100). A
random screening of the full database of 50 active compounds em-
bedded into a set of approximately 1000 molecules would thus
provide a hit rate of approximately 5 %. The yield is defined as the
percentage of true actives of all active compounds within the data-

Figure 5. Topographical interaction models generated based on public site-
directed mutagenesis data for the three biogenic amine receptors. Pharmaco-
phore models (see Figure 1) have been mapped into the respective topograph-
ical receptor model. The models reveal putative receptor interaction sites for
most of the pharmacophoric features observed within each antagonist class.
A) a1A (class I) pharmacophore and receptor model ; the reference compound is
prazosin; B) a1A (class II) pharmacophore and receptor model ; the reference
compound is compound 10 ; C) 5-HT2A (class I) pharmacophore and receptor
model ; the reference compound is spiperone ; D) 5-HT2A (class II) pharmaco-
phore and receptor model; the reference compound is minanserin ; E) D2
(class I) pharmacophore and receptor model ; the reference compound is spiper-
one ; F) D2 (class II) pharmacophore and receptor model ; the reference com-
pound is clozapine. The color scheme for the pharmacophoric features is the
same as that in Figure 1. Arrows indicate putative molecular interactions be-
tween the pharmacophoric points and the receptor sites. The arrow color code
indicates the type of molecular interaction: light blue : hydrophobic; red: salt
bridge to negative ionizable group from receptor (Asp3.32), green : hydrogen-
bonding to receptor donor site (for example, His6.55 or Asn6.55); orange :
aromatic stacking interaction.
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base retrieved by virtual screening (yield = number of true actives
in hit list/number of true actives in full database). In order to priori-
tize the virtual hits, fit values were extracted from the citest output
file to reflect the quality of the mapping onto the pharmacophore
for each compound. The fit values were used for the ranking of
the virtual hits and the calculation of enrichment plots (yield as a
function of the percentage of the database evaluated ranked by fit
value).

Similarities of Aureus training sets and MDDR test sets : To check
if the success in the predictivity of the pharmacophores is due to
the fact that the compounds of the MDDR test set reveal structural
similarity to the molecules of the training set, the similarity of the
MDDR test-set molecules to all the molecules of the training set
was calculated by using Tanimoto coefficients (based on Unity fin-
gerprints) in the SYBYL program.[20] Tanimoto coefficients are de-
fined as NAB/(NA+NB�NAB), where NA and NB are the number of bit
sets on (that is, 1) in bit strings (binary representation of molecular
structure) for molecules A and B, respectively, and NAB is the
number of bits that are common to both. The value of the Tani-
moto coefficient varies between 0 and 1. The lower the coefficient,
the smaller is the similarity between the molecules being com-
pared.

Generation of Aventis test database and virtual screening : In
order to check if the a1A pharmacophore models are able to pro-
vide mappings of the strong a1A binders as identified from the bio-
genic amine radioligand assay panel, the molecular structures were
converted from an sd file for Catalyst by using the catConf option;
for each molecule, a conformational set within 20 kcal mol�1 of
energy from the global minimum was generated. The database
was virtually screened by using the two respective pharmacophore
hypotheses (class I and class II) with the citest command within
Catalyst. Compounds mapping all pharmacophoric features were
retrieved as virtual hits (omit parameter set to zero) and the phar-
macophore alignments allowing the best fit were saved.

Experimental testing : D2, a1A, and 5-HT2A receptor binding assays
were performed as described elsewhere.[21–23] Briefly, for the D2 re-
ceptor, the binding of 1.5 nm [3H]-spiperone (supplier NEN) to
human recombinant D2 receptor in CHO-K1 cell membranes (4 mg
per well) was measured after incubation for 30 min at 37 8C
in 25 mm 2-[4-(2-hydroxyethyl)-1-piperazinyl)]ethanesulfonic acid
(HEPES; pH 7.4, 200 mL) containing 5 mm MgCl2, 1 mm CaCl2, and
0.5 % bovine serum albumin (BSA). For the a1A receptor radioligand
displacement assay, 0.5 nm [3H]-prazosine (supplier NEN) was used
as the radioligand. Recombinant adrenergic a1A receptor in CHO-
K1 cell membranes (30.4 mg per well) was incubated for 40 min at
37 8C in 50 mm tris(hydroxymethyl)aminomethane/HCl (Tris/HCl;
pH 7.7, 200 mL). For the 5-HT2A receptor, the binding of 1 nm [3H]-
ketanserine (supplier NEN) to human recombinant 5-HT2A receptors
in CHO-K1 cell membranes (15 mg per well) was measured after in-
cubation for 15 min at 37 8C in 50 mm Tris/HCl (pH 7.4, 200 mL). For
all three assays, binding reactions were terminated by filtration
through Millipore GF/B filter plates and radioactivity was deter-
mined with a liquid scintillation counter (Perkin–Elmer). IC50 values
were calculated from the averages of double determinations at
eight different concentrations.
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